
2020-10-02

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math. LEL

Prof. Hiren Patel, Ph.D., P.Eng.

Prof. Werner Dietl, Ph.D.

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

 Some rights reserved.

Dangling pointers

2
Dangling pointers

Outline

• In this lesson, we will:

– Review what happens when we call delete

– See that

• These pointers still hold their values

• You can still access and manipulate this deallocated memory

– This can lead to very difficult-to-find bugs

– The solution is straight-forward, but requires rigorous control on
values

3
Dangling pointers

Dangling pointers

• A pointer has a value

– If the value is 'nullptr', this is a known invalid address

– If initialized or assigned a value returned by new,
 the pointer stores a valid address

– Once memory is deallocated, it is no longer valid memory

– A dangling pointer is a pointer that stores an address that is no
longer allocated

4
Dangling pointers

Dangling pointers

• Remember that all delete does is pass the value of the operand to
the operating system

#include <iostream>

int main();

int main() {

 int *p_value{new int{42}};

 std::cout << "Before delete: " << p_value << std::endl;

 delete p_value;

 std::cout << "After delete: " << p_value << std::endl;

 return 0;

}

Output:
 Before delete: 0x1588010
 After delete: 0x1588010

2020-10-02

2

5
Dangling pointers

Dangling pointers

• Because a dangling pointer still stores an address, it is similar to a
wild pointer, only the behavior is much worse

– A wild pointer is almost certainly invalid

– A dangling pointer stores an address that has previously been
allocated

– Operating systems may flag deallocated memory as available, but
may not waste the time to flag it as no longer available

• This is reasonable:

– If the same program asks for more memory,
 if possible it will use this memory first

– If another program asks for memory and no more memory is
available, it may then reclaim deallocated memory assigned to
another program

6
Dangling pointers

Dangling pointers

• Two separate requests for memory will result in two different
addresses

#include <iostream>

int main();

int main() {

 int *p_value_1{new int{42}};

 int *p_value_2{new int{91}};

 std::cout << "First new: " << p_value_1 << std::endl;

 std::cout << "Second new: " << p_value_2 << std::endl;

 delete p_value_1;

 delete p_value_2;

 return 0;

}

Output:
 First new: 0x1ea5010
 Second new: 0x1ea5030

7
Dangling pointers

Dangling pointers

• If memory has been deallocated,
 the operating system is welcome to reuse it for future requests

#include <iostream>

int main();

int main() {

 int *p_value_1{new int{42}};

 std::cout << "First new: " << p_value_1 << std::endl;

 delete p_value_1;

 int *p_value_2{new int{91}};

 std::cout << "Second new: " << p_value_2 << std::endl;

 delete p_value_2;

 return 0;

}

Output:
 First new: 0x1ea5010
 Second new: 0x1ea5010

8
Dangling pointers

Dangling pointers

• Now, the same memory is being used for two purposes
#include <iostream>

int main();

int main() {

 long *p_value_1{ new long{42} };

 delete p_value_1;

 double *p_value_2{ new double{91.0} };

 std::cout << "Before: " << *p_value_2 << std::endl;

 *p_value_1 = 150;

 std::cout << "After: " << *p_value_1 << std::endl;

 std::cout << "After: " << *p_value_2 << std::endl;

 return 0;

}

Output:
 Before: 91
 After: 150
 After: 7.41098e-322

2020-10-02

3

9
Dangling pointers

Dangling pointers

• A thought experiment:

– Imagine what may happen if the two pointers, one dangling off of
the other, use the same memory for similar purposes…

10
Dangling pointers

Dangling pointers

• However, once in a blue moon, the operating system may actually
take that deallocated memory away and give it to another program

#include <iostream>

int main();

int main() {

 int *p_value{new int{42}};

 delete p_value;

 for (int k{0}; k < 1000000000; ++k) {

 // Do nothing...

 }

 *p_value = 91;

 std::cout << *p_value << std::endl;

 return 0;

}

Output after 57368 executions:
 Segmentation fault (core dumped)

11
Dangling pointers

Dangling pointers

• This can be solved by always assigning deallocated pointers the
value of nullptr:

#include <iostream>

int main();

int main() {

 int *p_value{new int{42}};

 // Use the value...

 delete p_value;

 p_value = nullptr;

 return 0;

}

– You should always assign deallocated pointers the value nullptr
even if the function is exiting—a wild pointer may pick up that value

12
Dangling pointers

Dangling pointers

• This becomes more difficult if multiple pointers are assigned the
same address:

#include <iostream>

int main();

int main() {

 int *p_value_1{new int{42}};

 std::cout << "Address 1: " << p_value_1 << std::endl;

 int *p_value_2{p_value_1};

 delete p_value_1;

 p_value_1 = nullptr;

 std::cout << "Address 2: " << p_value_2 << std::endl;

 *p_value_2 = 91;

 std::cout << "New value: " << *p_value_2 << std::endl;

 return 0;

}

Output:
 Address 1: 0x1dc9010
 Address 2: 0x1dc9010
 New value: 91

2020-10-02

4

13
Dangling pointers

Warning!

• The single most greatest difficult for students studying algorithms
and data structures is this belief that delete does something magical

– The statement

delete p_data;

 does nothing more than send the address to the operating system

• The operating system simply flags the memory at that location as
being available for future allocations

14
Dangling pointers

Summary

• Following this lesson, you now

– Understand that delete does not change the value of a pointer

– Know that calling delete on a pointer:

• Allows the operating system to flag the memory as available

• The operating system, however,
 usually still leaves the memory allocated to the task…usually

– When a pointer is deallocated, it must be assigned nullptr

– Otherwise, delete does nothing to change the value of the pointer

15
Dangling pointers

References

[1] https://en.wikipedia.org/wiki/Dangling_pointer

16
Dangling pointers

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

2020-10-02

5

17
Dangling pointers

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

